

Geotechnischer Untersuchungsbericht Sieverner Straße 82-84, 27607 Geestland-Langen

Projekt-Nr.: G220109

Auftraggeber: Projektentwicklung Rainer Gloy e.K.

Logestraße 2 27616 Beverstedt

Auftragnehmer: Geonovo GmbH

Blinke 6 26789 Leer

Bearbeiter: Dipl.-Geol. Frauke Menzel

Dipl.-Geol. Dr. Carsten Germakowsky

Dieser Bericht umfasst:

- 19 Seiten
- 10 Tabellen
- 3 Abbildungen
- Anlagen

Leer, den 16.06.2022

Telefon: 04 91 / 960 960 - 20 Telefax: 04 91 / 960 960 - 39 E-Mail: info@geonovo.de Internet: www.geonovo.de

Allgemeine gutachterliche Erklärung

Dieses Gutachten ist nur vollständig gültig. Auszugweise entnommene Abschnitte können die Gesamtaussage verfälschen. Das Gutachten darf daher nur vollständig und unverändert vervielfältigt werden.

Die Vervielfältigung darf nur innerhalb des Anliegens erfolgen, das dem Zweck der Beauftragung entspricht.

Die in diesem Gutachten enthaltenen Aussagen beziehen sich nur auf den Zeitpunkt und den direkten Ort der Probenahme bzw. der Ausführung von Feldarbeiten sowie der Messungen im bodenmechanischen Labor. Übertragungen auf übergeordnete Flächeneinheiten stellen daher Interpretationen dar. Diese können von den in der Bauausführung real aufgefundenen Verhältnissen, z. B. in Baugruben, Schürfen, abweichen. Sollten sich Abweichungen von den getroffenen Aussagen ergeben, sollte Rücksprache mit den Verfassern dieses Gutachtens erfolgen.

Eine Veröffentlichung dieses Gutachtens bedarf der schriftlichen Genehmigung der Geonovo GmbH, Leer.

Inhalt

Αl	lgen	neine gutachterliche Erklärung	2
1.	F	ormalia	5
	1.1	Veranlassung und Beauftragung	5
	1.2	Unterlagen	5
	1.3	Normen	5
2.	Α	ngaben zu dem Untersuchungsobjekt	6
	2.1	Lokalität	6
	2.2	Dimensionen	8
	2.3	Einordnung in Geotechnische Kategorie	8
3.	R	egionale Übersicht und Einordnung	8
4.	L	okale Bodenverhältnisse und Baugrund nach Kartenlage	8
5.	D	urchgeführte Untersuchungen	10
6.	L	okaler Bodenaufbau und Grundwasserverhältnisse nach Aufschluss	10
	6.1	Lagerungsdichten und Konsistenzen	11
	6.2	Grundwasser	12
7.	K	lassifizierung gemäß DIN 18300 (Bodenklassen) und DIN 18196 (Bodengruppen)	12
8.	В	odenmechanische Untersuchungen	13
9.	Z	usammenfassung in Homogenbereichen	14
10).	Bodenkennwerte	15
11	1.	Diskussion der Ergebnisse	17
12	2.	Empfehlungen	18
13	3	Wasserhaltung / Versickerung	19

Tabellenverzeichnis

Tabelle 1: Erschlossene Bodenschichten und geologische Ansprache	11
Tabelle 2: Bindige Böden - Ableitung der Konsistenz aus Schlagzahlen N_{10} einer DPH	11
Tabelle 3: Nichtbindige Böden - Ableitung der Lagerungsdichte aus Schlagzahlen N ₁₀ eine DPH	
Tabelle 4: Klassifizierung der Böden	
Tabelle 5: Probenzusammenstellung	13
Tabelle 6: Ergebnisse der Kornverteilung	14
Tabelle 7: typische Durchlässigkeiten für Lockergesteine nach DIN 18130	14
Tabelle 8: Festlegung und Kriterien der Homogenbereiche	15
Tabelle 9: Bodenkennwerte für grobkörnige Böden (empirische Werte, Fachliteratur)	16
Tabelle 10: Bodenkennwerte der erschlossenen Böden (empirische Werte, Fachliteratur).	17
Abbildungsverzeichnis	
Abbildung 1: Luftbild des Untersuchungsgebiets (Übersicht) (Google Earth, 2022)	7
Abbildung 2: Luftbild des Untersuchungsgebietes (Detail) (Google Earth, 2022)	7
Abbildung 3: NIBIS® Kartenserver (2022): Bodenkarte 1:50.000 BK50 (geändert) - Landesamt für Bergbau, Energie und Geologie (LBEG), Hannover	

Anlagenverzeichnis

Anlage: Lageskizze Sondierungen

Bohrprofile und Rammdiagramme

Sieblinien

1. Formalia

1.1 Veranlassung und Beauftragung

Die Projektentwicklung Rainer Gloy e.K., 27616 Beverstedt plant auf dem Grundstück an der Sieverner Straße 82 – 84 eine Wohnbauentwicklung mit unterschiedlichen Wohnangeboten für Senioren zu realisieren. Für die weitere Planung sollte eine erste Einschätzung zur Tragfähigkeit des Untergrunds getroffen werden.

Die Geonovo GmbH, 26789 Leer, wurde durch den Fachplaner beauftragt die örtlichen Bodenund Baugrundverhältnisse auf dem Baugrundstück zu ermitteln.

Die Beauftragung umfasst folgenden Leistungsumfang:

- Aufschluss der örtlichen Bodenschichtung nach DIN EN ISO 22475-1 durch
 Rammkernsondierungen (RKS), Entnahmekategorie C, Bodenproben der Güteklasse 5
- Aufschluss der örtlichen Lagerungsdichte nach DIN EN ISO 22476-2 durch Schwere Rammsondierungen (DPH)
- Beschreibung der angetroffenen Bodenarten nach DIN EN ISO 14688-1
- Ermittlung der Grundwasserstände
- Entnahme von Bodenproben

1.2 Unterlagen

Zur Angebotsabgabe, Planung und Durchführung der Baugrund- bzw. Bodenuntersuchung wurden folgende Unterlagen zur Verfügung gestellt:

Projektbeschreibung, Projektentwicklung Rainer Gloy e.K. vom 11.05.2022

Lageplan, ohne Maßstab

Bebauungsentwurf, ohne Maßstab

1.3 Normen

Die Inhalte des vorliegenden Geotechnischen Berichts basieren auf folgenden nationalen und europäischen Normen (Sofern die Normen im Rahmen der Beauftragung angesprochen werden):

- DIN EN 1997-2:2010-10 (Eurocode EC 7) Entwurf, Berechnung und Bemessung in der Geotechnik
- DIN EN 1990:2010-12 (Eurocode EC 0) Grundlagen der Tragwerksplanung
- DIN EN ISO 14688-1:2018-05 Geotechnische Erkundung und Untersuchung -Benennung, Beschreibung und Klassifizierung von Böden – Teil 1: Benennung und Beschreibung
- DIN 18196:2011-05 Erd- und Grundbau Bodenklassifikation für bautechnische Zwecke
- DIN EN ISO 22475-1:2007-01 Geotechnische Erkundung und Untersuchung Probenentnahmeverfahren und Grundwassermessungen – Teil 1: Technische Grundlagen der Ausführung
- DIN EN ISO 22476-1:2013-10 Geotechnische Erkundung und Untersuchung Felduntersuchungen – Teil 1: Drucksondierungen mit elektrischen Messwertaufnehmern und Messeinrichtungen für den Porenwasserdruck
- DIN EN ISO 22476-2:2012-03 Geotechnische Erkundung und Untersuchung Felduntersuchungen – Teil 2: Rammsondierungen
- DIN 4020:2010-12 Geotechnische Untersuchungen für bautechnische Zwecke Ergänzende Regelungen zu DIN EN 1997-2

2. Angaben zu dem Untersuchungsobjekt

2.1 Lokalität

Das Grundstück an der Sieverner Straße 82 – 84 befindet sich in der Ortschaft Langen in der Gemeinde Geestland.

Der minimale Abstand zu der sich westlich erstreckenden Weser beträgt ca. 5.700 m.

Das Untersuchungsgebiet liegt ca. 2.600 m nördlich der Landesgrenze zwischen Bremen und Niedersachsen, nördlich von Bremerhaven.

Die Sieverner Straße verläuft zwischen dem südlich gelegenen Bremerhaven und dem nördlich gelegenen Cuxhaven parallel zur östlich verlaufenden BAB 27.

Abbildung 1: Luftbild des Untersuchungsgebiets (Übersicht)

(Google Earth, 2022)

Abbildung 2: Luftbild des Untersuchungsgebietes (Detail)

(Google Earth, 2022)

2.2 Dimensionen

Die Grundstücksfläche beträgt ca. 1,2 ha. Es ist eine zweigeteilte Wohnbebauung auf dem Gelände geplant. Im östlichen Bereich des Grundstücks ist ein 2,5-geschossiges Hauptgebäude mit Wohnungen, Tagespflege, Café und ambulantem Dienst vorgesehen. Im Westen sind Doppelbungalows geplant. Das derzeitige Konzept kann noch angepasst und weiter nach Westen verrückt werden.

2.3 Einordnung in Geotechnische Kategorie

In dem Untersuchungsgebiet ist mit eher hochanstehendem Grundwasser und tragfähigem Baugrund zu rechnen.

Die geplanten Gebäude werden als nicht setzungsempfindlich bewertet.

Die geplanten Gebäude werden der Geotechnischen Kategorie 2 zugeordnet. Bei Bauwerken der Geotechnischen Kategorien 1 und 2 können Bodenkennwerte zu statischen Berechnungen aus empirischen Werten und der Fachliteratur entnommen werden.

3. Regionale Übersicht und Einordnung

Das Untersuchungsgebiet befindet sich am westlichen Rand der "Hohen Lieth". Die Ortschaft Langen befindet sich auf dem südlichen Teil dieses 36 km langen und 6 km breiten Geestrückens zwischen Bremerhaven und Cuxhaven, welcher aus der Saalekaltzeit stammt. Die "Hohe Lieth" ist ein Teil der Wesermünder Geest.

4. Lokale Bodenverhältnisse und Baugrund nach Kartenlage

Gemäß der bodenkundlichen Karte BK50, Datenserver NIBIS® des LBEG Hannover, befindet sich das Untersuchungsgebiet konkret in der Bodenlandschaft der Lehmgebiete (s. Abbildung 33).

Als örtlicher Bodentyp werden Podsol-Braunerden aus Geschiebedecksanden über glazifluviatilen Sanden ausgewiesen. In Senken und Tälern können auch Gley-Braunerden auftreten.

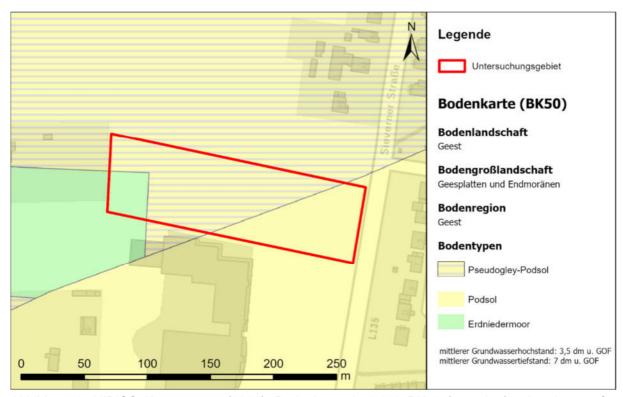


Abbildung 3: NIBIS® Kartenserver (2022): Bodenkarte 1:50.000 BK50 (geändert) – Landesamt für Bergbau, Energie und Geologie (LBEG), Hannover

Die Flächenbegrenzung der zuvor beschriebenen Bodentypen und die daraus resultierende Kartendarstellung in bodenkundlichen Karten ergibt sich aus Modellrechnungen vorhandener Bohrdaten (Bodenaufschlüsse) und gibt nicht die realen örtlichen Gegebenheiten wieder. Die Flächenbegrenzungen sind somit nicht geradlinig oder gar parzellenscharf wie in Abbildung 3 dargestellt.

Der örtliche Baugrund bzw. die realen Bodenverhältnisse sind daher immer durch direkte Aufschlüsse (Bohrungen, Schürfe, etc.) zu überprüfen.

Gemäß der geologischen Karte GK50 und der geologischen Übersichtskarte GÜK500, Datenserver NIBIS® des LBEG Hannover, stehen in dem Untersuchungsgebiet im Osten saalezeitliche Geschiebelehme und -mergel und im Westen holozäne schluffige bis tonige Brackwasserablagerungen an.

5. Durchgeführte Untersuchungen

Folgende Leistungen wurden am 19.05.2022 durchgeführt:

- Geotechnische Erkundung gemäß DIN EN ISO 22475-1 durch Rammkernsondierungen (RKS) zur Erkundung der Bodenschichtung einschließlich Erstellung von Bodenprofilen sowie Beschreibung der Bodenarten nach DIN EN ISO 14688-1 und Probenahme nach DIN EN ISO 2275-1.
 - 3 Stück mit Aufschlusstiefe T = 6,0 m
 - 2 Stück mit Aufschlusstiefe T = 8,0 m
- Geotechnische Erkundung gemäß DIN EN ISO 22476-2 durch Schwere Rammsondierungen (DPH) zur Erkundung der Lagerungsdichte.
 - 3 Stück mit Aufschlusstiefe T = 6,0 m
 - 2 Stück mit Aufschlusstiefe T = 8,0 m

6. Lokaler Bodenaufbau und Grundwasserverhältnisse nach Aufschluss

Die am 19.05.2022 ausgeführten Rammkernsondierungen (RKS) zeigen folgenden Schichtenaufbau.

Der oberste Horizont des Bodenprofils besteht aus einem humosen Oberboden von 0,5 m – 1,1 m Mächtigkeit.

In der südöstlichen RKS 01 wurde unter dem Oberboden durchgängig Sand angetroffen, der bis zur Sondierendtiefe von 6,0 m unter Geländeoberkante (u. GOK) erbohrt wurde.

In der nordöstlichen RKS 02 sowie in der in der Mitte der Fläche gelegenen RKS 03 wurde unter dem Oberboden zunächst ein 0.9-1.8 m mächtige Mittelsandschicht erbohrt. Darunter folgte ein Schluff mit einer Mächtigkeit von 1.1-1.2 m. Unter dem Schluff folgte ein Feinsand der ab 3.7-4.4 m u. GOK von einem Geschiebelehm bzw. Geschiebemergel unterlagert wurde.

In den beiden westlich gelegenen RKS 04 und 05 folgte der Geschiebelehm / -mergel direkt unterhalb des Oberbodens ab einer Tiefe von 0,7 – 1,1 m u. GOK.

Die folgende Tabelle 1 zeigt die erschlossenen Bodenschichten mit Tiefenlage und Mächtigkeit.

Tabelle 1: Erschlossene Bodenschichten und geologische Ansprache

Tiefe [m u. GOK] [min. / max.]	Mächtigkeit [m] [min. / max.]	Bodenschicht	Kurzzeichen DIN 4022-1	Gruppe DIN 18196	Eignung als Baugrund
0,0	0,5 / 1,1	Oberboden	fS, ms, uʻ, hʻ	ОН	nicht
0,5 / 0,8	0,9 / 1,8	Sande	mS, fs', u', g', h'	SE	gut
1,7 / 2,5	1,1 / 1,2	Schluff	U, fs, t	UL / UM	nicht bis mäßig
2,8 / 3,7	0,7 / 0,9	Sande	fS, ms', u-u', g"	SE	gut
0,7 / 4,4	> 3,6	Geschiebelehm / -mergel	U, s-s', t', g'	UL	mäßig bis gut

Die Bohrprofile sind dem Bericht als Anlage beigefügt.

6.1 Lagerungsdichten und Konsistenzen

Nach den Rammkernsondierungen wurden an den jeweiligen Ansatzpunkten auch schwere Rammsondierungen (DPH) zur Erkundung der Lagerungsdichte / Konsistenz ausgeführt.

Die DPH 01 zeigt bis 1,0 m Tiefe eine lockere Lagerung. Darunter folgt durchgehend eine mitteldichte bis dichte Lagerung der Sande.

DPH 02 und 03 zeigen im Bereich des Oberbodens eine lockere Lagerung. Die Sande darunter sind mitteldicht gelagert. Die Schluffschicht weist eine weiche bis steife Konsistenz, während der Sand darunter wieder mitteldicht gelagert ist. Der Übergang in den Geschiebelehm zeigt eine weiche Konsistenz, die ab 5,3 m u. GOK in eine steife bis halbfeste Konsistenz übergeht.

DPH 04 und 05 zeigen im Oberboden ebenfalls eine lockere Lagerung. Der darunter anstehende Geschiebelehm / -mergel weist bis in eine Tiefe von 2,3 m u. GOK eine breitige bis weiche Konsistenz auf. Bis 4,0 m u. GOK liegt eine steife Konsistenz vor, darunter ist die Konsistenz halbfest.

Tabelle 2: Bindige Böden - Ableitung der Konsistenz aus Schlagzahlen N₁₀ einer DPH

Konsistenz	breiig	weich	steif	halbfest	fest		
Schlagzahlen N ₁₀	0 – 2	2-5	5 – 9	9 – 17	> 17		
Gegenüberstellung technisch / empirisch ermittelter Konsistenzen mit Schlagzahlen N ₁₀ einer schweren							

Gegenüberstellung technisch / empirisch ermittelter Konsistenzen mit Schlagzahlen N₁₀ einer schweren Rammsondierung DPH (u.a. aus: Prinz und Strauss (2012) für bindige Böden)

Tabelle 3: Nichtbindige Böden - Ableitung der Lagerungsdichte aus Schlagzahlen N₁₀ einer DPH

Lagerung	sehr locker	locker	mitteldicht	dicht	sehr dicht
Schlagzahlen N ₁₀	0 – 1	1 – 4	4 – 13	13 – 24	> 24

Gegenüberstellung technisch / empirisch ermittelter Lagerungsdichten mit Schlagzahlen N₁₀ einer schweren Rammsondierung DPH (u.a. aus: Prinz und Strauss (2012) für nichtbindige Böden)

Die Sondierdiagramme sind diesem Bericht als Anlage beigefügt.

6.2 Grundwasser

Gemäß der topographischen Karte, Datenserver NIBIS® des LBEG Hannover, schwankt die Geländehöhe im Untersuchungsgebiet zwischen 3,5 m NHN im Südwesten bis 6,5 m NHN im Nordosten des Gebiets.

Der Hydrogeologischen Übersichtskarte (HÜK200, Datenserver NIBIS® des LBEG Hannover) zufolge befindet sich der Grundwasserstand im Untersuchungsgebiet bei 0,0 m NHN bis 1,0 m NHN.

Am 19.05.2022 konnte in den Rammkernsondierungen Grundwasser bei 0.9 - 1.6 m u. GOK ermittelt werden. Ein zweiter Grundwasserstand wurde bei den Sondierungen 2 und 3 unterhalb der Schluffschichten bei 2.9 - 3.7 m u. GOK erschlossen.

Die angegebenen (Grund-)Wasserstände beziehen sich auf einmalige Messungen am 19.05.2022 und geben weder den höchsten Stand noch einen Schwankungsbereich des Grundwassers wieder.

Unter Berücksichtigung der zurückliegenden Witterungsbedingungen ist für die Bauwerksbemessung als **Grundwasserbemessungshöhe** 0,8 m u. GOK anzunehmen.

7. Klassifizierung gemäß DIN 18300 (Bodenklassen) und DIN 18196 (Bodengruppen)

Gemäß DIN 18300 und DIN 18196 erfolgt eine Einteilung der örtlich aufgeschlossenen Böden in Bodenklassen und Bodengruppen wie folgt:

Tabelle 4: Klassifizierung der Böden

Bodenart	Bodenklasse DIN 18300	Bodengruppe DIN 18196
Oberboden	1	ОН
Sande	3	SE
Schluff	4	UL / UM
Geschiebelehm / -mergel	4	UL

<u>Bodenklasse 1</u>: Oberboden (Mutterboden); oberste Bodenschicht, die neben anorganischen Stoffen auch Humus und Bodenlebewesen enthält.

<u>Bodenklasse 3</u>: Leicht lösbare Bodenarten; nichtbindige bis schwachbindige Sande, Kiese und Sand-Kies-Gemische mit bis zu 15 Gewichtsprozent Beimengungen an Schluff und Ton und mit höchstens 30 Gew.-% Steinen über 63 mm Korngröße und bis zu 0,01 m³ Rauminhalt.

<u>Bodenklasse 4</u>: Mittelschwer lösbare Bodenarten; Gemische von Sand, Kies, Schluff und Ton mit einem Anteil von mehr als 15 Gew.-%, sowie bindige Bodenarten von leichter bis mittlerer Plastizität und höchstens 30 Gew.-% Steine von über 63 mm Korngröße bis zu 0,01 m³ Rauminhalt.

8. Bodenmechanische Untersuchungen

An insgesamt drei Bodenproben wurde die Korngrößenverteilung mittel Nasssiebung bzw. Sieb-Schlämmanalyse ermittelt. In der nachfolgenden Tabelle 5 sind die zu untersuchenden Bodenproben sowie die Ergebnisse dargestellt.

Die Proben wurden im Labor nach DIN 18123 gesiebt. Die Sieblinien (Kornverteilungskurven) sind diesem Bericht als Anhang beigefügt.

Tabelle 5: Probenzusammenstellung

Bohrung	Einzelproben	Tiefenlage	Bodenart
01	01.2	0,5 – 1,8	Sand
02 + 03	02.2; 03.2 – 03.4	0,7 – 2,5	Sand
02 + 03	02.3; 03.5	1,7 – 3,7	Schluff

Tabelle 6: Ergebnisse der Kornverteilung

Probe	Tiefe [m u. GOK]	Feinstkornanteil < 0,063mm [%]	Ungleichförmigkeits- zahl cu	k _f -Wert aus Siebung [m/s]	Bemessungs- k _f -Wert [m/s]
01.2	0,5 – 1,8	0,53	4,57	3,253 · 10-4	3,253 · 10 ⁻⁵
02.2; 03.2 – 03.4	0,7 – 2,5	0,90	2,17	3,080 · 10-4	3,080 · 10-5
02.3; 03.5	1,7 – 3,7	51,8	-	1,031· 10 ⁻⁹	1,031 · 10 ⁻¹⁰

Das Ergebnis der Siebungen der Sande zeigt unter Berücksichtigung eines Faktors von 0,1 gemäß DWA A138-1 für Bemessungsdurchlässigkeiten einen k_F Wert von 3,080 bis 3,253 • 10^{-5} m/s. Der Sand ist nach DIN 18130 somit als durchlässig für Wasser zu bewerten (siehe Tabelle 7).

Der Schluff zeigt einen Bemessungs-kf-Wert von 1,031 · 10⁻¹⁰ m/s. Der Schluff ist nach DIN 18130 als schwach bis sehr schwach durchlässig zu bewerten.

Tabelle 7: typische Durchlässigkeiten für Lockergesteine nach DIN 18130

Bodenart	k _f -Wert [m/s]	Einstufung
Grobkies	5 · 10 ⁻¹ bis 5 · 10 ⁻³	sehr stark durchlässig
Fein-/ Mittelkies	2 · 10 ⁻² bis 5 · 10 ⁻⁴	stark durchlässig
Sandiger Kies	2 · 10 ⁻² bis 3 · 10 ⁻⁴	stark durchlässig
Grobsand	5 · 10 ⁻³ bis 2 · 10 ⁻⁴	stark durchlässig bis durchlässig
Mittelsand	2 · 10 ⁻³ bis 5 · 10 ⁻⁵	durchlässig
Feinsand	5 · 10 ⁻⁴ bis 5 · 10 ⁻⁶	durchlässig
Schluffiger Sand, sandiger Schluff	5 · 10 ⁻⁵ bis 5 · 10 ⁻⁸	durchlässig bis schwach durchlässig
Schluff	5 · 10 ⁻⁵ bis 1 · 10 ⁻⁹	durchlässig bis schwach durchlässig
Toniger Schluff	5 · 10 ⁻⁶ bis 1 · 10 ⁻¹⁰	schwach bis sehr schwach durchlässig
Schluffiger Ton, Ton	1 · 10 ⁻⁸ bis 1 · 10 ⁻¹¹	schwach bis sehr schwach durchlässig

9. Zusammenfassung in Homogenbereichen

Die ermittelten Bodenschichten können aufgrund ihrer Eigenschaften (Bodenansprache in den Feldarbeiten, Ergebnisse aus den bodenmechanischen und chemischen Laboruntersuchungen) zu folgenden Homogenbereichen zusammengefasst werden:

Tabelle 8: Festlegung und Kriterien der Homogenbereiche

	Homogenbereich A	Homogenbereich B	Homogenbereich C	Homogenbereich D
Horizonte	Humoser Oberboden	Sande	Schluff	Geschiebelehm / - mergel
Kornspektrum	fS, ms, uʻ, hʻ	mS, fs, u', g', h'	U, fs, t	U, s-s', t', g'
Färbung	braun	hellbraun - beige	hellbraun - hellgrau	hellgrau
Humusanteil	2 - 5 %	0,5 – 2 %	0,1 – 0,5	
Fremdstoffe	o. B.	o. B.	o. B.	o. B.
Schadstoffe	n. u.	n. u.	n. u.	n. u.
Tiefenlage [m u. GOK]	0,0 – 1,1	0,5 – 4,4	1,7 – 3,7	> 0,7

(o. B. ohne Befund; n. u. nicht untersucht)

Die Einteilung in Homogenbereiche ersetzt die bisher gebräuchliche Unterscheidung in Bodenklassen. Da die Bodenklassen vornehmlich bei den ausführenden Bauunternehmen noch Anwendung finden, werden hier beide Klassifizierungen angegeben.

Die Homogenbereiche haben den Vorteil, dass hier auch umweltchemische Parameter (z.B. Schadstoffanalysen (sofern beauftragt, bzw. projektbezogen erforderlich) berücksichtigt werden. Ein mit Schadstoffen belasteter Feinsand ist daher von einem unbelasteten Feinsand zu differenzieren, obwohl beide Feinsande aus dem gleichen Horizont stammen können und identische bodenmechanische Eigenschaften aufweisen.

10. Bodenkennwerte

Der humose Oberboden ("Mutterboden") unterliegt einem besonderen Schutz gemäß § 202 BauGB (Mutterboden, der bei der Errichtung und Änderung baulicher Anlagen sowie bei wesentlichen anderen Veränderungen der Erdoberfläche ausgehoben wird, ist in nutzbarem Zustand zu erhalten und vor Vernichtung oder Vergeudung zu schützen).

Daher erübrigt es sich, für den humosen Oberboden Bodenkennwerte für statische Berechnungen auszuweisen.

Den sonstigen erschlossenen Bodengruppen können die in Tabelle 9 und Tabelle 10 aufgeführten Bodenkennwerte (Ergebnisse aus Laboruntersuchungen, empirische Werte und Literaturwerte) für statische und planerische Berechnungen zugeordnet werden.

Tabelle 9: Bodenkennwerte für grobkörnige Böden (empirische Werte, Fachliteratur)

Tabelle 9. Bodelikeliliwei	to ful giot	Mornige D	oden (empirische werte,	1 acriiiteratur)	
Bindigkeit			Nichtbindiger Boden	Nichtbindiger Boden	Bindiger Boden
Hauptgruppe			Grobkörnige Böden	Grobkörnige Böden	Feinkörnige Böden
Gruppe			Feinsand	Feinsand	Schluff
Beschreibung			Sand enggestuft	Sand enggestuft	leicht plastisch
Kriterium *			U < 6	U < 6	W _L < 35 %
Bodengruppe			SE	SE	UL
Messwert	Symbol	Einheit			
Kornverteilung			fS	fS	U, t, fs
Konsistenz			entfällt	entfällt	weich
Lagerungsdichte			locker	mittel	entfällt
Kornform			gerundet	gerundet	gerundet / plattig
Bodenklasse DIN 18300			3	3	4
Frostempfindlichkeit ZTV E-StB 17			nicht frostempfindlich (F 1)	nicht frostempfindlich (F 1)	sehr frostempfindlich (F 3)
Erodierbarkeit Wind / Wasser n. BGR			sehr hoch / hoch	sehr hoch / hoch	sehr gering / gering
Verdichtbarkeit ZTV A-StB 12			gut verdichtbar (V 1)	gut verdichtbar (V 1)	schlecht verdichtbar (V
Tragfähigkeit			gut	gut	gering
Durchlässigkeitsbeiwert	k _f	[m/s]	1 • 10-4	1 • 10 ⁻⁴ - 2 • 10 ⁻⁵	1 • 10 ⁻⁵ - 1 • 10 ⁻⁷
Wichte erdfeucht	Υ	kN/m³	16,0	17,0	17,0
Wichte unter Auftrieb	γ'	kN/m³	8,5	9,5	9,0
Reibungswinkel	٥		30,0 - 32,5	32,5 - 37,5	27,5 - 32,5
Kohäsion (Anfang)	Cı	kN/m²	entfällt	entfällt	0
Kohäsion (undrainiert)	Си	kN/m²	entfällt	entfällt	5 - 60
Steifemodul	Es	MN/m ²	20 - 60	50 - 100	3 - 10

Gegenüberstellung von empirischen Bodenkennwerten und Literaturangaben (u.a. aus: Empfehlungen des Arbeitsausschusses Ufereinfassungen (EAU, 2020) und Zentrum Geotechnik der TU München

Tabelle 10: Bodenkennwerte der erschlossenen Böden (empirische Werte, Fachliteratur)

Bindigkeit			Bindiger Boden	Bindiger Boden	Bindiger Boden
Hauptgruppe			Gemischtkörnige Böden	Gemischtkörnige Böden	Gemischtkörnige Böden
Gruppe			Lehm	Lehm	Geschiebemergel
Beschreibung			mittelplastisch, kalkarm	leichtplastisch, kalkarm	leichtplastisch, kalkreich
Kriterium *			50 % > WL > 35 %	WL < 35 %	WL < 35 %
Bodengruppe			UM	UL	UL
Messwert	Symbol	Einheit			
Kornverteilung			U, fs, t, fg'	U, fs, t, fg'	U, fs, t, fg'
Konsistenz			weich	halbfest	fest
Lagerungsdichte			entfällt	entfällt	entfällt
Kornform			gerundet / plattig	gerundet / plattig	gerundet / plattig
Bodenklasse DIN 18300			4	4	4
Frostempfindlichkeit ZTV E-StB 17			sehr frostempfindlich (F 3)	sehr frostempfindlich (F 3)	sehr frostempfindlich (F 3)
Erodierbarkeit Wind / Wasser n. BGR			gering / gering	gering / gering	gering / gering
Verdichtbarkeit ZTV A-StB 12			schlecht verdichtbar (V 3)	schlecht verdichtbar (V 3)	schlecht verdichtbar (V 3)
Tragfähigkeit			gering	gut	sehr gut
Durchlässigkeitsbeiwert	kf	[m/s]	5 • 10 ⁻⁶ - 1 • 10 ⁻⁹	1 • 10 ⁻⁶ - 1 • 10 ⁻⁹	1 • 10 ⁻⁶ - 1 • 10 ⁻⁹
Wichte erdfeucht	Υ	kN/m³	19,0	21,0	22,0
Wichte unter Auftrieb	γ'	kN/m³	9,0	11,0	12,0
Reibungswinkel	0		27,5	27,5	30,0
Kohäsion (Anfang)	Cı	kN/m²	5	10	25
Kohäsion (undrainiert)	Си	kN/m²	10 - 25	50 - 100	200 - 700
Steifemodul	Es	MN/m ²	4 - 8	5 - 20	30 - 100

Gegenüberstellung von empirischen Bodenkennwerten und Literaturangaben (u.a. aus: Empfehlungen des Arbeitsausschusses Ufereinfassungen (EAU, 2020) und Zentrum Geotechnik der TU München

11. Diskussion der Ergebnisse

Die durchgeführten Rammkernsondierungen auf dem Gelände einen recht unterschiedlichen Bodenaufbau. Im Südosten wurde unterhalb des Oberbodens durchgängig Sand erschlossen, der ab 1,0 m u. GOK mitteldicht gelagert ist.

Im Nordosten sowie in der Mitte des Grundstücks wurde unter dem Oberboden ebenfalls mitteldicht gelagerter Sand erschlossen, in den eine 1,1-1,2 m mächtige, weiche bis steife, Schlufflage eingeschaltet ist. Unter dem Sand folgte ein weicher bis halbfester Geschiebelehm /-mergel.

Im Westen des Grundstücks wurde unter dem Oberboden ein zunächst breiig bis weicher und ab 2,3 m u. GOK steifer bis halbfester Geschiebelehm / -mergel.

Grundwasser wurde bei 0.9 - 1.6 m u. GOK ermittelt werden. Ein zweiter Grundwasserstand wurde bei den Sondierungen 2 und 3 unterhalb der Schluffschichten bei 2.9 - 3.7 m u. GOK erschlossen. Als Bemessungswasserstand sollte von 0.8 m u. GOK angenommen werden.

12. Empfehlungen

Zur Gründungsplanung empfehlen wir, den vorliegenden geotechnischen Untersuchungsbericht dem Tragwerksplaner zur Verfügung zu stellen.

Zur Umsetzung des geplanten Bauvorhabens sind baugrundverbessernde Maßnahmen durch Bodenaustausch erforderlich.

Der Oberboden ist nicht zur Aufnahme statischer Lasten geeignet und ist vollständig abzuschieben.

Im östlichen Teil des Grundstücks ist der Boden ab 1,0 m u. GOK ausreichend tragfähig und sollte bis in diese Tiefe ausgetauscht werden. Die Sande der Baugrubensohle sind statisch nachzuverdichten. Anschließend kann ein Füllsand lagenweise mit Dmax = 0,3 m optimal lagerungsdicht eingebaut werden.

Im westlichen Teil des Grundstücks ist der Boden erst ab einer Tiefe von 2,3 m u. GOK tragfähig und muss bis in diese Tiefe ausgetauscht werden. In diesem Teil des Grundstücks stehen Geschiebelehme an. Geschiebelehme neigen bei dynamischer Belastung sowie bei Niederschlägen zum Aufweichen. Die Erdarbeiten sollten daher bei trockenen Witterungsverhältnissen durchgeführt werden. Um den empfindlichen Geschiebelehm nicht zu stören, ist der Erdaushub in jedem Fall im Vor-Kopf-Verfahren auszuführen.

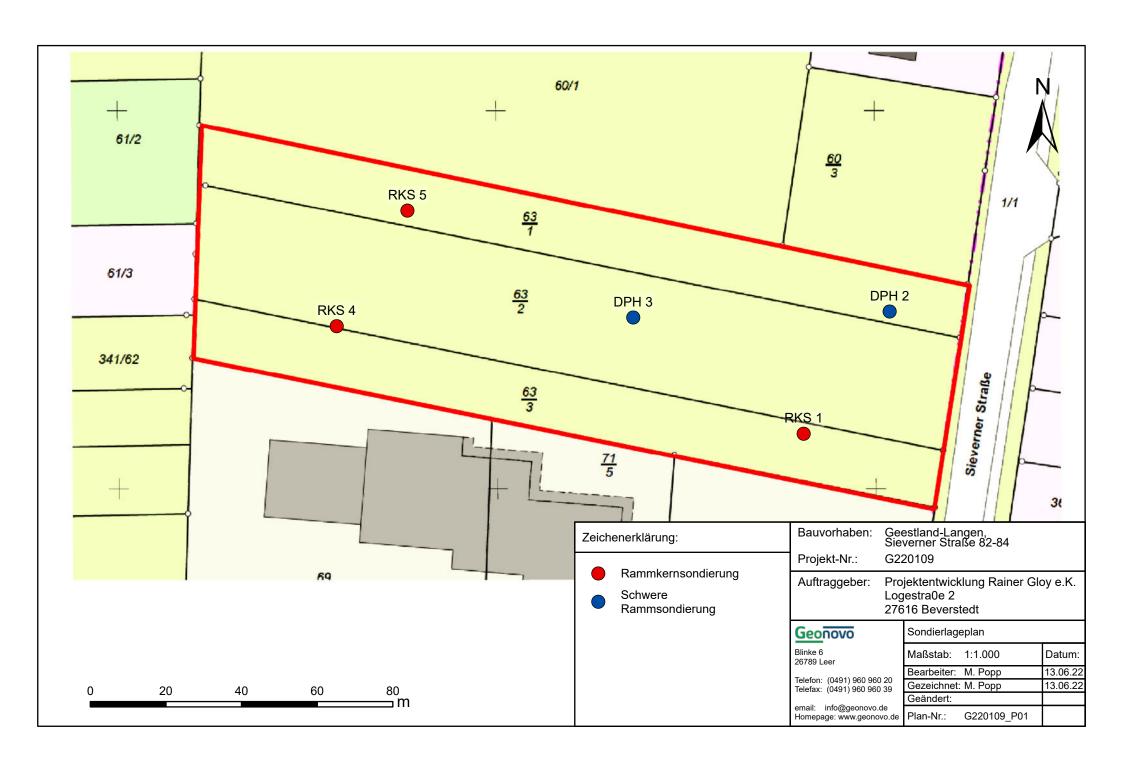
Als Trennschicht ist auf dem Geschiebelehm ein Geovlies der Georobustheitsklasse GRK 3 zu verlegen. Darauf können dann die Füllsande lageweise eingebaut werden.

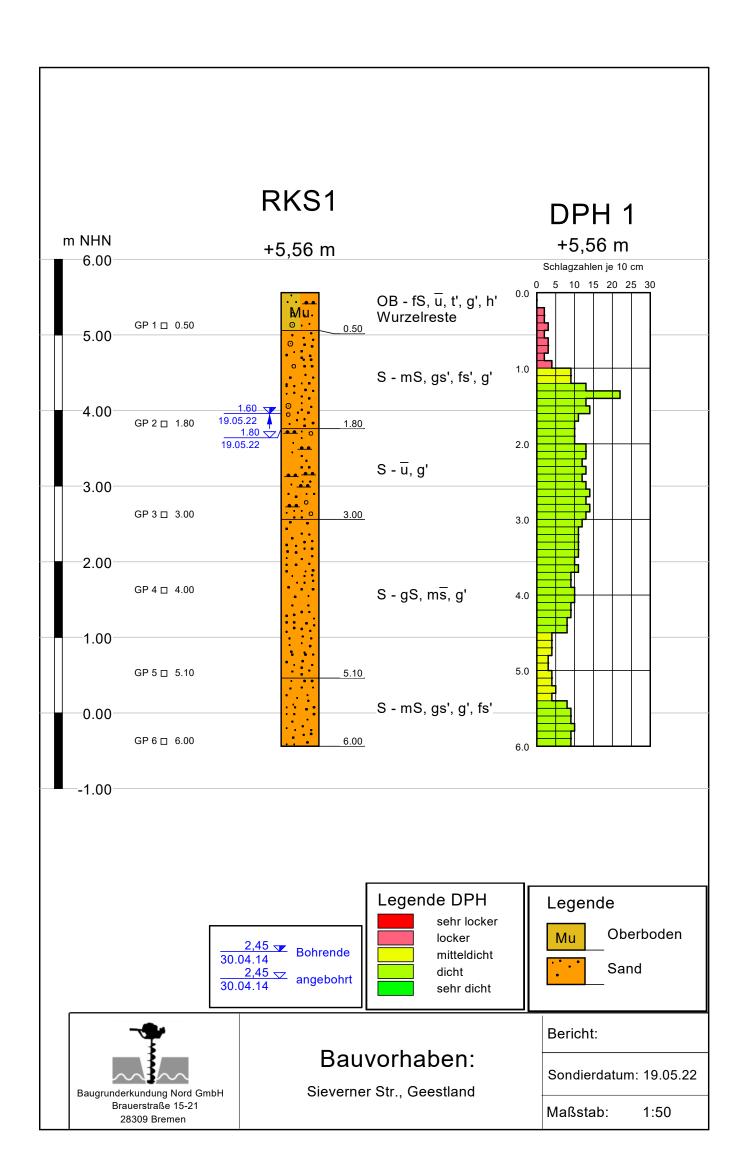
Die Erdarbeiten müssen unter Berücksichtigung eines Lastausbreitungswinkels von 45° erfolgen. Ein entsprechender Mehraushub ist einzukalkulieren.

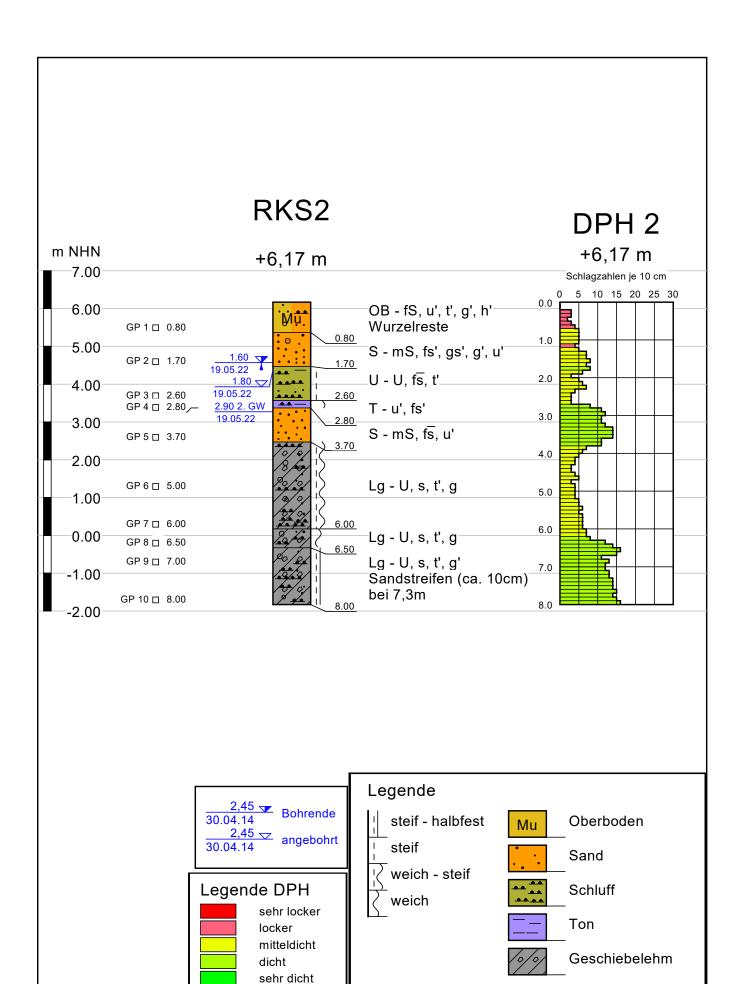
13. Wasserhaltung / Versickerung

Bei einem Bodenaushub > 0,8 m kann das Grundwasser angeschnitten werden. Je nach Baugrubentiefe und Wasserandrang kann eine offene Schwerkraftentwässerung ausreichen. Bei tieferen Baugruben und hohem Wasserandrang sollten Spülfilter am Baugrubenrand eingebracht werden.

Aufgrund der auf dem Grundstück vorhandenen bindigen Bodenschichten, ist eine Versickerung von Niederschlagswasser nur bedingt möglich. Aufgrund des Bodenaufbaus ist eine Versickerung nur im östlichen Teil des Grundstücks machbar. Die anstehenden Sande sind gut durchlässig. In den RKS 01 und 02 ist der Grundwasserstand ausreichend niedrig, um eine Versickerung zu ermöglichen.

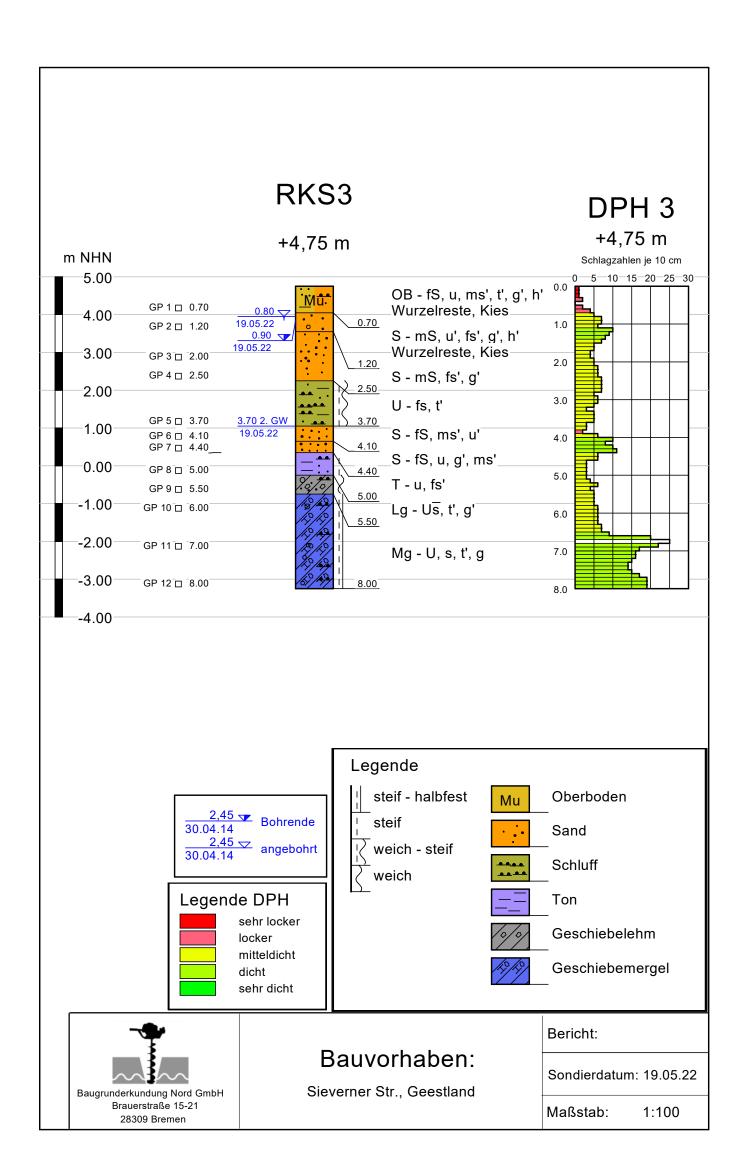

Die bindigen Schichten sind nur schwach bis sehr schwach durchlässig, so dass diese für eine Versickerung nicht geeignet sind.

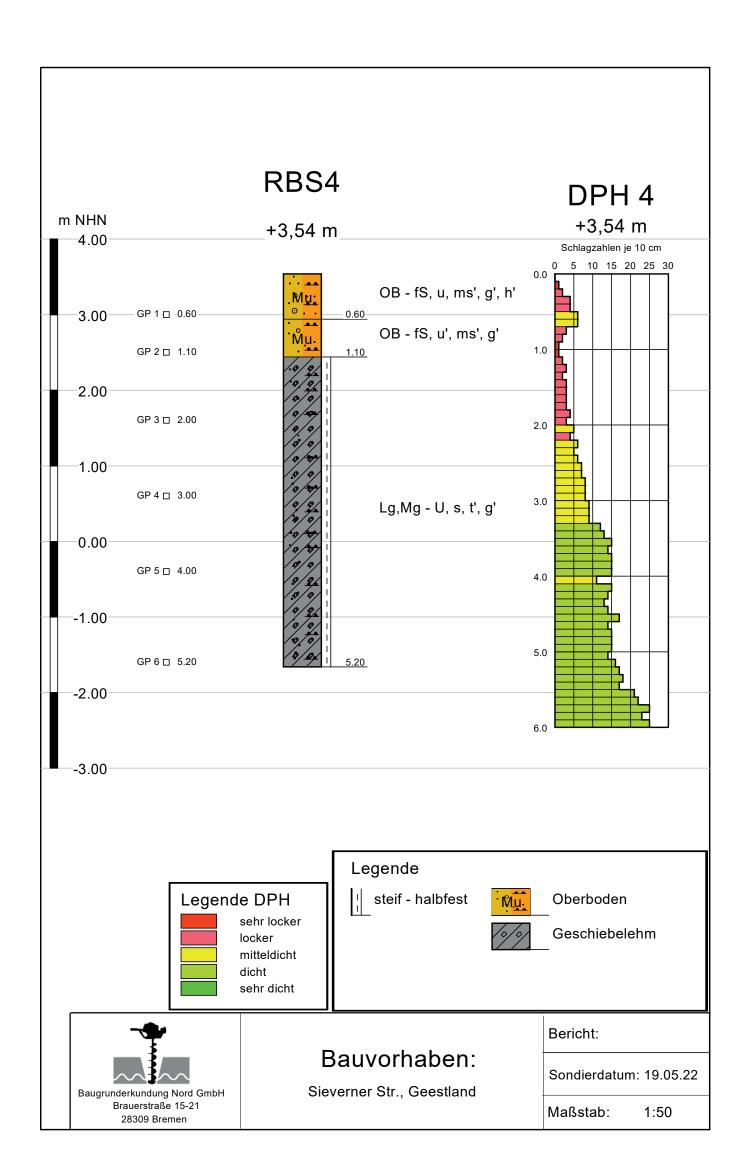

Aufgestellt,

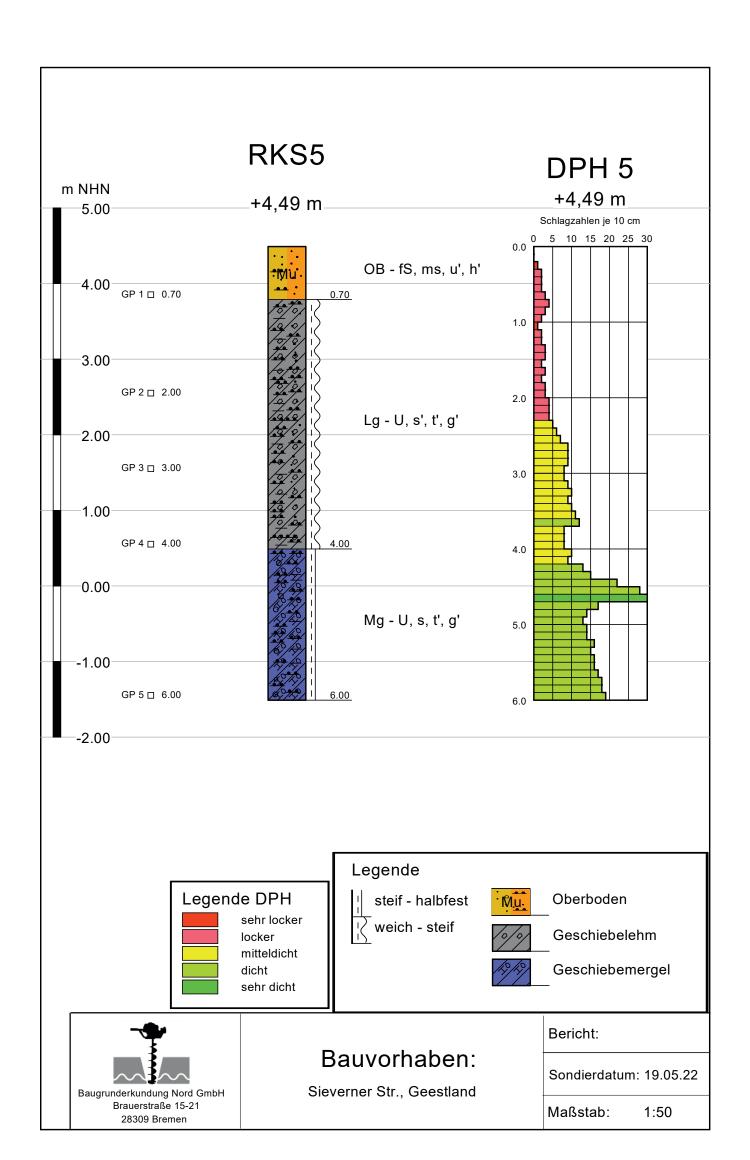

Leer, den 16. Juni 2022

ppa. Dipl.-Geol. Frauke Menzel

ppa. Dipl.-Geol. Dr. Carsten Germakowsky


Bauvorhaben:


Sieverner Str., Geestland


Bericht:

Sondierdatum: 19.05.22

Maßstab: 1:100

Blinke 6 26789 Leer

Tel.: 0491 / 960 960 - 20 Fax.: 0491 / 960 960 - 39

Prüfungsnr.: G220109

Anlage: zu:

Bestimmung der Korngrößenverteilung

Naß-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: G220109

Bauvorhaben: Geestland, Sieverner Straße 82-84

Auftraggeber: Projektentwicklung Rainer Gloy e.K.

am: 10.06.2022

Bemerkung: Probe Nr. 2022/144

Entnahmestelle: RKS 01.2

Station:

Entnahmetiefe: 0,5-1,8

Bodenart: Sand

m unter GOK

Art der Entnahme: gestörte Probenahme

Entnahme am: 19.05.2022 durch: Baugrund Nord

Siebanalyse:

Einwaage Siebanalyse me: 467,25 g 0,00 g Abgeschlämmter Anteil ma:

Gesamtgewic	ht der Probe mt: 467,2	25 g			
	Siebdurchmesser	Rückstand	Rückstand	Durchgang	
	[mm]		[%]	[%]	
1	65,000	0,00	0,00	100,0	
2	31,500	0,00	0,00	100,0	
3	16,000	48,64	10,41	89,6	
4	8,000	27,80	5,95	83,6	
5	4,000	26,81	5,74	77,9	
6	2,000	21,24	4,55	73,4	
7	1,000	32,32	6,92	66,4	
8	0,500	88,37	18,91	47,5	
9	0,250	125,36	26,83	20,7	
10	0,125	75,30	16,12	4,6	
11	0,063	18,93	4,05	0,5	
	Schale	2,48	0,53	-0,0	
		407.05			

Summe aller Siebrückstände: 467,25 g Größtkorn [mm]: 31,50

Siebverlust: SV = me - S =

-0,00 g SV' = (me - S) / me * 100 =-0,00

Bemerkungen:

© By IDAT-GmbH 1995 - 2020 V 4.43 76721

© By IDAT-GmbH 1995 - 2020 V 4.43 76721

Prüfungs-Nr.: G220109

Bauvorhaben: Geestland, Sieverner Straße 82-84

Auftraggeber: Projektentwicklung Rainer Gloy e.K.

am: 10.06.2022

Bemerkung: Probe Nr. 2022/144

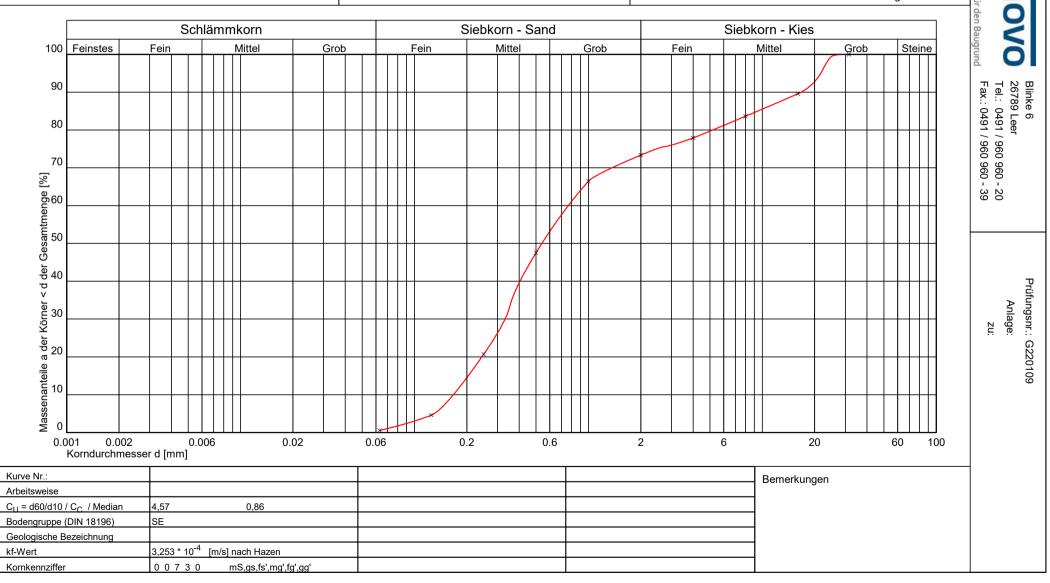
Bestimmung der Korngrößenverteilung

Naß-/Trockensiebung

nach DIN 18123

Entnahmestelle: RKS 01.2

Station:


Entnahmetiefe: 0,5-1,8

Bodenart: Sand

m unter GOK

Art der Entnahme: gestörte Probenahme

Entnahme am: 19.05.2022 durch: Baugrund Nord

Blinke 6 26789 Leer

Tel.: 0491 / 960 960 - 20 Fax.: 0491 / 960 960 - 39

Prüfungsnr.: G220109

Anlage: zu:

Bestimmung der Korngrößenverteilung

Naß-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: G220109

Bauvorhaben: Geestland, Sieverner Straße 82-84

Auftraggeber: Projektentwicklung Rainer Gloy e.K.

am: 10.06.2022

Bemerkung: Probe Nr. 2022/145

Entnahmestelle: RKS 02.2 und RKS 03.2 bis 03.04

Station:

Entnahmetiefe: 0,8-1,7 und 0,7-2,5 m unter GOK

Bodenart: Sand

Art der Entnahme: gestörte Probenahme

Entnahme am: 19.05.2022 durch: Baugrund Nord

Siebanalyse:

419,09 g Einwaage Siebanalyse me: Abgeschlämmter Anteil ma: 0,00 g

Gesamtgewich	t der Probe mt: 419,09	9 g			
	Siebdurchmesser	Rückstand	Rückstand	Durchgang [%]	
	[mm]	[g]	[%]		
1	65,000	0,00	0,00	100,0	
2	31,500	0,00	0,00	100,0	
3	16,000	0,00	0,00	100,0	
4	8,000	0,00	0,00	100,0	
5	4,000	10,46	2,50	97,5	
6	2,000	8,90	2,12	95,4	
7	1,000	12,24	2,92	92,5	
8	0,500	43,99	10,50	82,0	
9	0,250	217,61	51,92	30,0	
10	0,125	114,31	27,28	2,8	
11	0,063	7,82	1,87	0,9	
	Schale	3,76	0,90	-0,0	
	1	440.00	O== O+1+==== [].		

Summe aller Siebrückstände: 419,09 g Größtkorn [mm]: 8,00

-0,00

Siebverlust:

SV = me - S =

SV' = (me - S) / me * 100 =

-0,00 g

© By IDAT-GmbH 1995 - 2020 V 4.43 76721

Bemerkungen:

© By IDAT-GmbH 1995 - 2020 V 4.43 76721

Prüfungs-Nr.: G220109

Bauvorhaben: Geestland, Sieverner Straße 82-84

Auftraggeber: Projektentwicklung Rainer Gloy e.K.

am: 10.06.2022

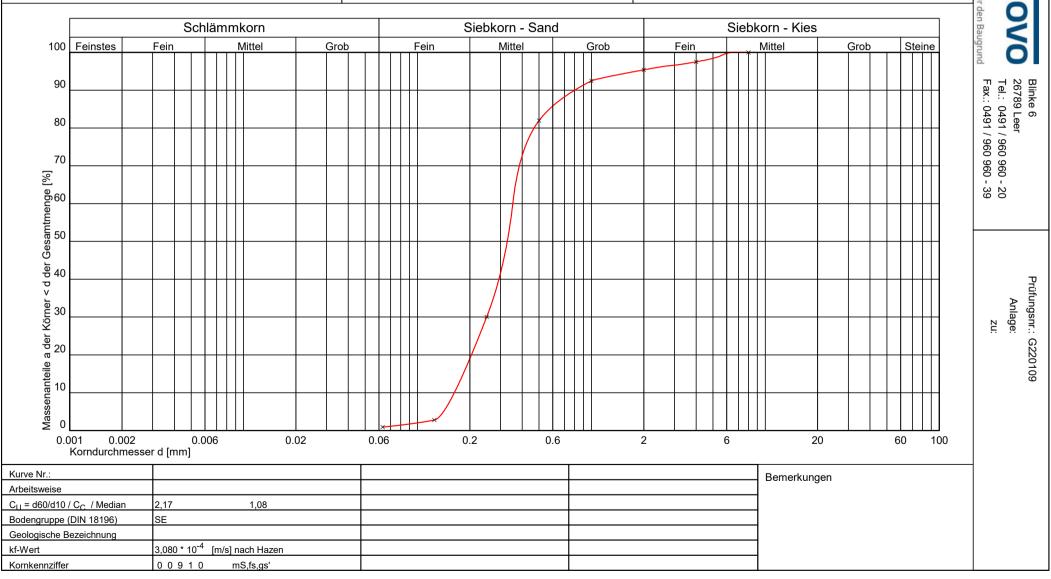
Bemerkung: Probe Nr. 2022/145

Bestimmung der Korngrößenverteilung

Naß-/Trockensiebung

nach DIN EN ISO 17892-4

Entnahmestelle: RKS 02.2 und RKS 03.2 bis 03.04


Station:

Entnahmetiefe: 0,8-1,7 und 0,7-2,5 m unter GOK

Bodenart: Sand

Art der Entnahme: gestörte Probenahme

Entnahme am: 19.05.2022 durch: Baugrund Nord

Blinke 6 26789 Leer

Tel.: 0491 / 960 960 - 20 Fax.: 0491 / 960 960 - 39

Prüfungsnr.: G220109

Anlage: zu:

Bestimmung der Korngrößenverteilung

Naß-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: G220109

Bauvorhaben: Geestland, Sieverner Straße 82-84

Auftraggeber: Projektentwicklung Rainer Gloy e.K.

am: 10.06.2022

Bemerkung: Probe Nr. 2022/146

Entnahmestelle: RKS 02.3 und RKS 03.5

Station:

Entnahmetiefe: 1,7-2,6 und 2,5-3,7 m unter GOK

Bodenart: Schluff

Art der Entnahme: gestörte Probenahme

Entnahme am: 19.05.2022 durch: Baugrund Nord

Siebanalyse:

Einwaage Siebanalyse me: 73,91 g Abgeschlämmter Anteil ma: 79,58 g %-Anteil der Siebeinwaage me' = 100 - ma' me': 48,15 %-Anteil der Abschlämmung ma' = 100 - me' ma': 51,85

Gesamtgewicht der Probe mt: 153,49 g							
	Siebdurchmesser	Rückstand	Rückstand	Durchgang			
	[mm]	[g]	[%]	[%]			
1	65,000	0,00	0,00	100,0			
2	31,500	0,00	0,00	100,0			
3	16,000	0,00	0,00	100,0			
4	8,000	0,00	0,00	100,0			
5	4,000	0,00	0,00	100,0			
6	2,000	0,00	0,00	100,0			
7	1,000	1,31	0,85	99,1			
8	0,500	1,41	0,92	98,2			
9	0,250	0,250 6,24		94,2			
10	0,125	17,39	11,33	82,8			
11	0,063	3 47,56 30,99		51,8			
	Schale	0,00	0,00	51,8			

Summe aller Siebrückstände: S = 73,91 g Größtkorn [mm]: 2,00

0,00

Siebverlust: SV =

SV = me - S = SV' = (me - S) / me * 100 =

0,00 g

© By IDAT-GmbH 1995 - 2020 V 4.43 76721

Bemerkungen:

Blinke 6 26789 Leer

Tel.: 0491 / 960 960 - 20 Fax.: 0491 / 960 960 - 39

Prüfungsnr.: G220109

Anlage: zu:

Bestimmung der Korngrößenverteilung

Naß-/Trockensiebung nach DIN EN ISO 17892-4

Prüfungs-Nr.: G220109

Bauvorhaben: Geestland, Sieverner Straße 82-84

Auftraggeber: Projektentwicklung Rainer Gloy e.K.

am: 10.06.2022

Bemerkung: Probe Nr. 2022/146

Entnahmestelle: RKS 02.3 und RKS 03.5

Station:

Entnahmetiefe: 1,7-2,6 und 2,5-3,7 m unter GOK

Bodenart: Schluff

Art der Entnahme: gestörte Probenahme

Entnahme am: 19.05.2022 durch: Baugrund Nord

Aräometer Nr.: 2

Meniskuskorrektur mit Dispergierungsmittel: Cm = 1,0000 Dest. Wasser

Ermittlung der Trockenmasse

Durch Trocknen (nach der Schlämmanalyse)

Behälter Nr.: Trockene Probe + Behälter md + mB 817,27 g

Korndichte ρ_S : 2,650 g/cm³ Behälter mB 737,69 g Trockene Probe md 79,58 g

mu = md * (ρ_S - 1) / ρ_S = 100% der Lesung 49,55 g

a = 100 / mu * (R + C $_{_{\rm H}}$) = 2,02 * (R + C $_{_{\rm H}}$) % von md

Uhrzeit Vorgabe: 00:00:00	Abgelaufene Zeit s/m/h/d	Aräometer- lesung R'=(ρ'-1)*10³	Lesung + Meniskuskorr. R=R'+Cm	Korndurch- messer d [mm]	Temperatur θ [°C]	Temp. korr. C_{θ}	Korr.Lesung $R+C_{\theta}$	Schlämm- probe a [%]	Gesamt- probe a _{tot} [%]
00:00:30	30 s	29,0000	30,00	0,0542	23,3	0,73	30,73	62,02	51,37
00:01:00	1 m	28,7000	29,70	0,0386	23,3	0,73	30,43	61,41	50,87
00:02:00	2 m	28,5000	29,50	0,0274	23,3	0,73	30,23	61,01	50,53
00:05:00	5 m	28,3000	29,30	0,0174	23,3	0,73	30,03	60,60	50,20
00:15:00	15 m	27,0000	28,00	0,0103	23,3	0,73	28,73	57,98	48,03
00:45:00	45 m	22,3000	23,30	0,0064	23,3	0,73	24,03	48,50	40,17
02:00:00	2 h	19,3000	20,30	0,0041	23,3	0,73	21,03	42,44	35,16
06:00:00	6 h	14,7000	15,70	0,0025	23,3	0,73	16,43	33,16	27,47
00:00:00	1 d	9,7000	10,70	0,0013	23,5	0.78	11,48	23,16	19,19

Bemerkungen:

© Bv IDAT-GmbH 1995 - 2020 V 4.43 76721

© By IDAT-GmbH 1995 - 2020 V 4.43 76721

Prüfungs-Nr.: G220109

Bauvorhaben: Geestland, Sieverner Straße 82-84

Auftraggeber: Projektentwicklung Rainer Gloy e.K.

am: 10.06.2022

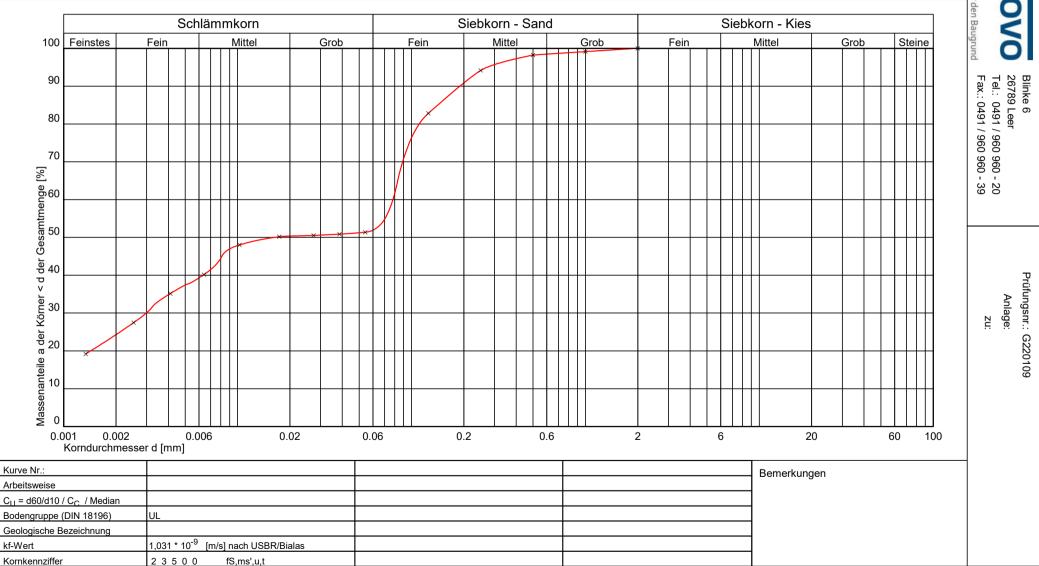
Bemerkung: Probe Nr. 2022/146

Bestimmung der Korngrößenverteilung

Naß-/Trockensiebung

nach DIN EN ISO 17892-4

Entnahmestelle: RKS 02.3 und RKS 03.5


Station:

Entnahmetiefe: 1,7-2,6 und 2,5-3,7 m unter GOK

Bodenart: Schluff

Art der Entnahme: gestörte Probenahme

Entnahme am: 19.05.2022 durch: Baugrund Nord

Geonovo